Existence of homoclinic solutions for a class of second order p-Laplacian systems with impulsive effects
نویسندگان
چکیده
This paper is concerned with the existence of homoclinic solutions for a class of second order p-Laplacian systems with impulsive effects. A new result is obtained under more relaxed conditions by using the mountain pass theorem, a weak convergence argument, and a weak version of Lieb’s lemma. MSC: 34C37; 35A15; 37J45; 47J30
منابع مشابه
Existence of positive solutions for a second-order p-Laplacian impulsive boundary value problem on time scales
In this paper, we investigate the existence of positive solutions for a second-order multipoint p-Laplacian impulsive boundary value problem on time scales. Using a new fixed point theorem in a cone, sufficient conditions for the existence of at least three positive solutions are established. An illustrative example is also presented.
متن کاملExistence solutions for new p-Laplacian fractional boundary value problem with impulsive effects
Fractional differential equations have been of great interest recently. This is because of both the intensive development of the theory of fractional calculus itself and the applications of such constructions in various scientific fields such as physics, mechanics, chemistry, engineering, etc. Differential equations with impulsive effects arising from the real world describe the dyn...
متن کاملHomoclinic solutions for second order discrete p-Laplacian systems
* Correspondence: hxfcsu@sina. com Department of Mathematics and Computer Science Jishou University, Jishou, Hunan 416000, P. R. China Full list of author information is available at the end of the article Abstract Some new existence theorems for homoclinic solutions are obtained for a class of second-order discrete p-Laplacian systems by critical point theory, a homoclinic orbit is obtained as...
متن کاملExistence of Subharmonic Solutions for a Class of Second-Order p-Laplacian Systems with Impulsive Effects
متن کامل
Infinitely Many Homoclinic Solutions for Second Order Nonlinear Difference Equations with p-Laplacian
We employ Nehari manifold methods and critical point theory to study the existence of nontrivial homoclinic solutions of discrete p-Laplacian equations with a coercive weight function and superlinear nonlinearity. Without assuming the classical Ambrosetti-Rabinowitz condition and without any periodicity assumptions, we prove the existence and multiplicity results of the equations.
متن کامل